掺铁近化学配比铌酸锂晶体的紫外光致吸收和 弛豫过程的研究

张艳丽 刘友文 杨永梅 赫崇君

(南京航空航天大学应用物理系,江苏南京 210016)

摘要 生长了系列掺杂低铁(质量分数分别为 0×10⁻⁶,3×10⁻⁶,5×10⁻⁶,10×10⁻⁶,25×10⁻⁶,50×10⁻⁶、100×10⁻⁶、)的近化学配比铌酸锂(SLN)晶体,测量了它们的紫外-可见光谱,并通过 477 nm 处的线性吸收系数估算晶体 中 Fe²⁺和 Fe³⁺的浓度。利用抽运(365 nm)-探测(632.8 nm)法测量不同掺杂浓度晶体光致吸收的动态过程和稳态特性,结果表明光致吸收是以扩展指数的形式衰减的,其衰减时间常数(即小极化子的寿命)随掺杂浓度和抽运光强增加而减小,扩展指数因子随抽运光强的增加而减少。根据电子的输运方程,利用四阶龙格-库塔方法对电子输运过程进行数值求解,模拟了掺铁铌酸锂(Fe:SLN)晶体的光致吸收的全过程,与实验所得结果符合得很好。 关键词 非线性光学;近化学配比铌酸锂;光致吸收;扩展指数

中图分类号 O436 文献标识码 A doi: 10.3788/AOS201232.0619006

Ultraviolet-Light-Induced Absorption and Its Relaxation in Fe-Doped Near-Stoichiometric LiNbO₃

Zhang Yanli Liu Youwen Yang Yongmei He Chongjun

(Department of Applied Physics, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016, China)

Abstract Near-stoichiometric lithium niobate (SLN) crystals doped with low iron are grown, in which the mass fractions of iron are 0×10^{-6} , 5×10^{-6} , 10×10^{-6} , 25×10^{-6} , 50×10^{-6} , 100×10^{-6} , respectively. And their ultraviolet-visible transmission spectra are measured. The concentrations of Fe²⁺ and Fe³⁺ are estimated by the linear absorption coefficients at the wavelength of 477 nm. The dynamic process and steady characteristics of the light-induced absorption of crystals are investigated by the pump-probe (365 nm and 632.8 nm) method. The results show that the dark decay process of light-induced absorption exhibits a stretched-exponential behavior, and the decay time constant (i.e., the small polaron lifetime) decreases with the Fe-doped concentration and the pump intensity, while the stretching factor decreases with the pumping intensity. The electron transport equations are solved numerically by the four-order Runge-Kutta method, and the whole process of the light-induced absorption in the SLN crystals doped with Fe is simulated, which is consistent with the experimental results.

Key words nonlinear optics; near-stoichiometric lithium niobate; light-induced absorption; stretching-exponential OCIS codes 190.5330; 160.3730; 210.4810

1 引 言

铌酸锂(LN)晶体具有压电、热释电、电光、非线 性光学和光折变效应等性质,在电光调制器、波导、 表面声波器件和体全息存储器等方面的应用引起了 人们极大的兴趣。在所有的光折变材料中,LN 晶 体是体全息存储中最好的材料之一,特别是 LN 晶

基金项目:国家自然科学基金(11174147,60608026)和江苏省自然科学基金(BK2009-366)资助课题。

作者简介:张艳丽(1986—),女,硕士研究生,主要从事光折变非线性光学方面的研究。

E-mail: zhangyanli0117@126.com

导师简介:刘友文(1966—),男,博士,教授,主要从事信息光子学和微纳米光子学等方面的研究。 E-mail: ywliu@nuaa.edu.cn(通信联系人)

收稿日期: 2012-02-20; 收到修改稿日期: 2012-03-07

体掺入铁(Fe:LN)可大大提高它的衍射效率和光 折变灵敏度等光折变性能。然而,当用均匀光读取 时,它将会擦除晶体中的存储的信息。为了解决这 种挥发性全息记录,提出了热固定^[1]、电固定^[2]和两 色全息存储方法^[3,4]。两色全息记录使用不同波长 的光,短波长的光对晶体进行敏化,长波长的光作为 记录光。这一全光过程实现了信息的全光记录和非 挥发性读取。用近红外光作为记录光的两色全息记 录中,未掺杂的 LN 晶体中双极化子和小极化子分 别作为深、浅能级中心^[5,6],掺杂 LN 晶体中杂质也 可作为深能级中心,且掺杂的 LN 晶体的双色光全 息记录性能得到了大幅度的提高^[6,7]。

同成分的铌酸锂(CLN)晶体含有大量的本征 缺陷,根据Li空位模型,在CLN晶体中含有空位 V_{II} (摩尔分数大约为 0.04)和反位 Nb $^{I+}$ (摩尔分数 大约为 0.01)缺陷,通过双坩锅或者添加 K₂O 助熔 剂可在富锂的熔液中提拉生长近化学配比铌酸锂 (SLN)晶体,其本征缺陷可以大大减少。结合掺杂 和生长后氧化/还原处理可以很好控制缺陷能级中 心特性,从而控制晶体的光折变性能。由于近化学 配比晶体的本征缺陷大大减少,其光折变性能对组 分、掺杂和生长后处理就更加敏感[8~12]。近年来, 人们用铁掺杂的 SLN(Fe:SLN)实现双色光全息记 录^[5,6],然而质量分数大于100×10⁻⁶的铁掺杂一方 面会导致浅能级中心(小极化子 Nbt+)寿命缩短和 浓度减少,另一方面将会在敏化光波长产生很强的 吸收,限制材料的可使用的厚度,并引起不期望出现 的热效应,这些效应都不利于掺杂 SLN 晶体应用于 双色光全息存储记录。因此,研究低浓度铁掺杂 SLN 晶体光学性质、对敏化光的响应以及晶体本征缺陷性 质对双色光全息存储具有更重要的现实意义。

本文生长了系列质量分数小于 100×10⁻⁶的 SLN 晶体,测量了它们的紫外(UV)-可见光谱,利 用抽运一探测法测量不同掺杂浓度晶体紫外光致吸 收(UVLIA)的动态过程和稳态特性,研究 UVLIA 的弛豫过程的性质与掺杂浓度和抽运光强的关系。 以双中心模型为基础,根据晶体中电荷输运方程,数 值模拟了 Fe:SLN 晶体的 UVLIA 的全过程及特 性,模拟结果与实验符合得很好。

2 实验准备

2.1 晶体准备

实验中所使用的未掺杂的 SLN 和 Fe: SLN 样 品是运用顶上籽晶熔液生长法(TSSG)^[13]在大气的 氛围中从富锂(LiO 摩尔分数为 0.58)的熔液中生 长制备的, 熔液中 Fe_2O_3 的质量分数分别为 0× 10^{-6} , 3×10^{-6} , 5×10^{-6} , 10×10^{-6} , 25×10^{-6} , $50 \times$ 10⁻⁶、100×10⁻⁶。用差热法测量所有晶体的居里温 度在 1202.0 ℃±0.5 ℃范围内,对应的晶体中 Li 质量浓度与 Li 和 Nb 总的质量浓度的百分比约在 49.80%±0.02%范围^[14],远高于 CLN 的 48.4%, 晶体的组成基本相同且接近 SLN 晶体。根据晶体 中 Li 质量浓度与 Li 和 Nb 总的质量浓度的百分比 为49.80%,可估算出所有晶体中反位缺陷 Nb^{‡+}约 为2.4×10²⁵ m⁻³。实验中所有晶体样品没有进行 后氧化/还原处理,采用 x 轴切割并抛光,尺寸为 10 mm×9 mm×2 mm,其中光轴平行于 10 mm 长 棱边方向。由于 Fe 杂质在 LN 晶体中的分凝系数 接近 1,可认为晶体中的杂质浓度等同于熔体中的 杂质浓度,晶体的特性参数如表1所示。

Sample	Doping mass fraction	$c_{\rm Fe}/$	$lpha_{ m 477\ nm}/m^{-1}$	$c_{\rm Fe^{2+}}$ /	$c_{\rm Fe^{3+}}$ /	$c_{\mathrm{Fe}^{2+}}/c_{\mathrm{Fe}}$	$c_{\mathrm{Fe}^{2+}}/c_{\mathrm{Fe}^{3+}}$
	in the melt $/10^{-6}$	$(10^{23} \mathrm{m}^{-3})$		$(10^{23} \mathrm{m}^{-3})$	$(10^{23} \mathrm{m}^{-3})$		
SLN1	0	/	1.6	0.035	/	/	/
SLN2	3	1.05	2.5	0.053	0.997	0.05048	0.053159
SLN3	5	1.75	3.0	0.065	1.685	0.03714	0.038576
SLN4	10	3.50	4.5	0.097	3.403	0.02777	0.028565
SLN5	25	8.80	9.0	0.194	8.606	0.02209	0.022590
SLN6	50	17.50	15	0.324	17.176	0.01851	0.018864
SLN7	100	34.90	30	0.648	34.252	0.01857	0.018919

表 1 SLN 晶体的特性参数 Table 1 Characteristic parameters of SLN crystals

2.2 UV-可见光谱实验

测量了晶体的 UV -可见光光谱。实验中使用 的是 PerkinElmer 公司的 Lambda750 型 UV -可见 -近红外分光光度计,测量晶体在 300~900 nm 范 围的透射率曲线 $T(\lambda)$ 。考虑到前后表面的反射 $R(\lambda) = \lceil (n-1)/(n+1) \rceil^2$, n 由晶体的 Sellmerier 方程确定^[15]。因此不考虑吸收时晶体的透射率

$$T_{\scriptscriptstyle 0}(\lambda) = (1-R)^2,$$

从而可以计算出晶体的吸收系数

$$\alpha(\lambda) = -\frac{1}{d} \ln \left[\frac{T(\lambda)}{T_0(\lambda)} \right], \tag{1}$$

式中 d 为晶体厚度。为了定量研究晶体的光致吸收过程,需要知道晶体中杂质的氧化/还原程度,即 Fe²⁺和 Fe³⁺离子的浓度。晶体中 Fe²⁺浓度可由波长为 477 nm 处得吸收系数 $\alpha_{477 \text{ nm}}$ 决定, $c_{\text{Fe}^{2+}} = 2.16 \times 10^{21} \text{ m}^{-2} \times \alpha_{477 \text{ nm}}^{[16,17]}$,从而计算出 Fe³⁺浓度 $c_{\text{Fe}^{3+}} = c_{\text{Fe}} - c_{\text{Fe}^{2+}}$ 以及 Fe²⁺ 占总铁 Fe 量的比值 $c_{\text{Fe}^{2+}}/c_{\text{Fe}}$,如表 1 所示。

2.3 UVLIA 实验

图1是用抽运-探测方法测量晶体的 UVLIA 及弛豫的实验装置。抽运光源是日本滨松 UV 点 光源,经内置的滤光片滤光其中心波长为 365 nm, 在晶体上 UV 光光斑直径为 6 mm, 光强可连续调 节,最大光强可达950 mW/cm²。探测光是波长为 632.8 nm 的水平偏振 He-Ne 激光,其光斑大小约1 mm,远小于抽运光的光斑。实验在室温下进行,在 UVLIA 阶段,UV 光直接照射到晶体样品(光轴水 平)上,使深能级中心 Fe²⁺ 的电子被激发,由反位缺 陷俘获形成小极化子,产生宽带吸收。探测光经中 性衰减片使光强减弱,保证探测光的光强足够小,避 免探测光本身对晶体的影响。实验中抽运光和探测 光之间的交角小于 5°,以确保晶体中有一个完整、 一致的交叠。由于光致吸收引起的探测光的光强变 化不大,He-Ne 激光器输出的波动将导致实验误 差。为了解决这个问题,实验中用分光镜将 He-Ne 激光分为两束,其中一束作为探测光垂直照射晶体 到达探测器 D1:另一束光未经过晶体直接进入探测 器 D2 作为参考信号,然后通过数据采集卡同时采

图 1 UVLIA 实验装置图 Fig. 1 Schematic of UVLIA experimental setup

集两个探测器的输出,以消除 He-Ne 激光器输出波动带来的实验误差。晶体的光致吸收定义为^[18]

$$\alpha(I_{\rm p},t) = -\frac{1}{d} \ln\left(\frac{I_{\rm s}'}{I_{\rm s}}\right), \qquad (2)$$

式中 *t* 为时间,*I*_p 为透过晶体前得抽运光光强,*I*'_s为 有抽运光照射时透过晶体的探测光光强,*I*_s 为没有 抽运光照射时透过晶体的探测光光强。

3 实验结果和理论分析

3.1 UV-可见光谱实验结果分析

图 2 是系列 SLN 晶体的 UV -可见光吸收谱 (SLN2 和 SLN3 吸收谱非常接近),光谱的记录光 平行于晶体的 *c* 轴,SLN 晶体中掺入 Fe 浓度的不 同对吸收边有很大的影响。从图 2 中很容易观察 到,随着 SLN 晶体中掺 Fe 浓度的增加,透过晶体的 截止波长向长波长方向移动,SLN1、SLN2、SLN3、 SLN4、SLN5、SLN6 和 SLN7 晶体的吸收边的截止 波长(*α*=20 cm⁻¹)分别是 307.2、307.8、308.0、 308.9、313.1、326.7、332.3 nm。吸收边对应于价 带顶到导带底的吸收跃迁,杂质缺陷对吸收边的影 响主要有两个方面:1)由于掺入的杂质对晶体的电 子状态产生了影响,从而使电子的能带结构有所变 化,在吸收谱上表现为晶体吸收边的移动;2)由于掺 入的杂质缺陷在禁带中产生了杂质能级,从而在吸 收谱上产生了很强的光吸收。

图 2 SLN 晶体的 UV -可见吸收光谱 Fig. 2 UV-visible absorption spectra of the SLN crystals

表1列出7个晶体在波长为477 nm 处的吸收 系数,随着晶体中总的铁掺杂浓度的增加,在 477 nm处的吸收系数几乎线性增加,如图3正方散 点图及线性模拟所示。需要注意的是无掺杂时晶体 在477 nm 处的吸收系数为1.6 m⁻¹,这说明了晶体 中的 Fe 杂质的浓度并不为零,这与大家熟知的标称纯的 LN 晶体中总存在质量分数为 10^{-6} 数量级 的 Fe 杂质是一致的。从 477 nm 处的吸收系数很容易计算出晶体中 Fe²⁺离子的浓度 $c_{Fe^{2+}}$ 以及 Fe²⁺离子占总铁掺杂的比值 $c_{Fe^{2+}}/c_{Fe}$ 。图 3 三角散点图 是 Fe²⁺离子占总铁掺杂的比值随 Fe 的掺杂浓度之间的关系。很显然,在相同的晶体生长条件下,当晶体中 Fe 杂质质量分数超过 50×10^{-6} 时,这个比值 趋于常数。晶体掺杂浓度越低,这个比值越大,从 图 3中的趋势可大致推算出标称无掺杂的 LN 晶体中 Fe 杂质的质量分数大约在 2×10^{-6} 。

- 图 3 在 477 nm 处的吸收系数和 Fe²⁺ 离子占总铁掺杂的 比值 c_{Fe}²⁺ / c_{Fe}随 Fe 的掺杂浓度之间的关系
- Fig. 3 Dependence of the absorption coefficients at 477 nm and the ratios $c_{\rm Fe}{}^{2+}/c_{\rm Fe}$ on Fe-doping mass fraction

3.2 UVLIA 实验结果分析

图 4 是 Fe:SLN 晶体的两中心电荷输运模型。 在 Fe:SLN 晶体中,除了掺杂形成的深能级中心 Fe²⁺、Fe³⁺外,还存在大量的反位缺陷 Nb⁵⁺_{Li},它能 俘获电子形成小极化子 Nb⁴⁺_{Li}。Berben 等^[19]证实了 电子在 Fe²⁺、Fe³⁺和 Nb⁴⁺_{Li}、Nb⁵⁺_{Li}之间可直接交换,

把这种现象叫做隧穿效应。本文以 Fe²⁺、Fe³⁺和小极化子 Nb⁴⁺、Nb⁵⁺分别作为深陷阱和浅陷阱中心, 由于 Fe 中心的能级比较深,热激发几率远小于光 激发几率,所有可以忽略热激发过程,但是 Nb⁴⁺、 Nb⁵⁺中心能级距离导带很近,需要考虑热激发过 程。考虑到深浅陷阱之间的直接激发和复合,则晶 体在 UV 光照下电荷输运方程

$$\frac{\mathrm{d}c_{\mathrm{Fe}^{3+}}}{\mathrm{d}t} = (S_1 + S_{12}c_{\mathrm{Nb}_{\mathrm{Li}}^{5+}})I(c_{\mathrm{Fe}} - c_{\mathrm{Nb}_{\mathrm{Li}}^{5+}}) - [\gamma_1 n + \gamma_{12}(c_{\mathrm{Nb}_{\mathrm{Li}}} - c_{\mathrm{Nb}_{\mathrm{Li}}^{5+}})]c_{\mathrm{Fe}^{3+}}, \qquad (3)$$

$$\frac{\mathrm{d}c_{\mathrm{Nb}_{\mathrm{Li}}^{5+}}}{\mathrm{d}t} = (\beta_2 + S_2 I + \gamma_{12} c_{\mathrm{Fe}^{3+}}) (c_{\mathrm{Nb}_{\mathrm{Li}}} - c_{\mathrm{Nb}_{\mathrm{Li}}^{5+}}) - [\gamma_2 n + S_{12} I (c_{\mathrm{Fe}} - c_{\mathrm{Fe}^{3+}})] c_{\mathrm{Nb}_{\mathrm{Li}}^{5+}}, \qquad (4)$$

$$\frac{\mathrm{d}n}{\mathrm{d}t} = S_1 I(c_{\mathrm{Fe}} - c_{\mathrm{Fe}^{3+}}) + (\beta_2 + S_2 I)(c_{\mathrm{Nb}_{\mathrm{Li}}} - c_{\mathrm{Nb}_{\mathrm{Li}}^{5+}}) -$$

$$\gamma_1 c_{\mathrm{Fe}^{3+}} + \gamma_2 c_{\mathrm{Nb}_{\mathrm{Li}}^{5+}}) n, \qquad (5)$$

式中 I 为抽运光的光强, c_{Fe} 为 Fe 的总浓度, $c_{Fe^{3+}}$ 为 Fe³⁺ 的浓度, S_1 为 Fe²⁺ 吸收一个光子激发电子到 导带的吸收截面, S_{12} 为 Fe²⁺ 吸收一个光子激发电 子隧穿到 Nb⁵⁺_{Li} 的吸收截面, γ_1 为导带中电子与 Fe³⁺ 的结合率, γ_{12} 为 Nb⁴⁺_{Li} 中电子隧穿与 Fe³⁺ 的结 合率, $c_{Nb_{Li}}$ 为 Nb⁴⁺_{Li} 中电子隧穿与 Fe³⁺ 的结 合率, $c_{Nb_{Li}}$ 为 Nb⁵⁺_{Li} 的总浓度, $c_{Nb^{5+}_{Li}}$ 为 Nb⁵⁺_{Li} 的浓度, S_2 为 Nb⁴⁺ 吸收一个光子激发电子到导带的吸收截面, γ_2 为导带中电子与 Nb⁵⁺_{Li} 的结合率, β_2 为 Nb⁴⁺_{Li} 的热 激发率, n 为导带中自由电子的浓度。自由载流子 的寿命很短, 所有导带中的电子很快达到平衡, 近似 有 $dn/dt \approx 0$, 故导带中的电子浓度可表示为

$$n = \frac{S_1 I (c_{\rm Fe} - c_{\rm Fe^{3+}}) + (\beta_2 + S_2 I) (c_{\rm Nb_{Li}} - c_{\rm Nb_{Li}^{5+}})}{(\gamma_1 c_{\rm Fe^{3+}} + \gamma_2 c_{\rm Nb_{Li}^{5+}})}.$$

(6)

光致吸收 αLi 可写为下式形式:

αii

$$= S_2^{\rm red} h \nu_{\rm red} (c_{\rm Nb_{1:}} - c_{\rm Nb_{1:}}^{5+}), \qquad (7)$$

式中 S_2^{red} 为 Nb⁴⁺_{Li} 在 632.8 nm 的光子吸收截面, $h_{\nu_{\text{red}}}$ 为探测红光 632.8 nm 的光子能量。

(3)~(7)式是耦合微分方程组,无法得到解析 解,所以考虑用四阶龙格-库塔方法进行数值模拟求 解,模拟出 Fe:SLN 晶体的整个 UVLIA 过程如图5 所示。当 UV 抽运光打开后,从 Fe²⁺离子中激发的 电子被反位缺陷俘获形成小极化子,产生光致吸收 并快速到达稳态,当关闭抽运光,小极化子由于能级 很浅,热激发导致光致吸收弛豫。由图 5 看出,实验 结果与模拟曲线吻合得很好。

很显然,光致吸收的稳态值与抽运光光强有关。 图 6 给出了 SLN1、SLN3、SLN4 晶体 UVLIA 的稳

theoretical simulation for a full UVLIA process 态值与抽运光光强的实验和模拟结果。从图中可以 看出,UVLIA的稳态值随抽运光光强的增加而增 加,并且增加趋于缓慢,当抽运光光强足够大 UVLIA 将会达到饱和。在相同的抽运光强下,随 着 Fe 掺杂浓度的增加, UVLIA 的稳态值变小。当 在 SLN 中掺 Fe 的质量分数达到 100×10⁻⁶,即使 实验中抽运光强最大,其 UVLIA 也非常小。 Berben 等研究表明,在 Fe:SLN 中小极化子弛豫主 要是由电子从 Nb^{‡+} 中心到 Fe³⁺ 中心的隧穿决定 的,当晶体的掺杂量增加时,在同样的氧化/还原条 件下,晶体中 Fe³⁺ 增加,电子从 Nb⁴⁺_L 中心到 Fe³⁺ 中 心的隧穿的几率增加,这些电子将会在小极化子中 心停留的时间会相对短一些,小极化子浓度会低一 些,导致 UVLIA 变小。当 Fe 掺杂浓度足够高(质 量分数为100×10⁻⁶)只能产生非常小的UVLIA, 除非使用脉冲抽运光才能产生明显的 UVLIA,并 运用于双色光全息记录[18,20]。因此,在运用低功率 连续光抽运时,只有低掺杂晶体才具有明显的 UVLIA,能应用于两色光全息记录^[21]。

当 UVLIA 达到稳定状态后,关掉抽运光, UVLIA 开始衰减。对于晶体中小极化子的弛豫过程,一般都用扩展指数函数进行模拟^[19,22~24],图 7 分别采用了单指数衰减方程和扩展指数方程对实验 数据的拟合,扩展指数方程形式如下:

 $\alpha_{Li} = \alpha_{Li} |_{t=t_0} \exp\{-[(t-t_0)/\tau]^{\beta}\},$ (8) 式中 $\tau \, \pi \beta \, \beta$ 别表示小极化子的寿命和扩展因子, 用半对数坐标来研究 UVLIA 的衰减过程,由图 7 可以看出,单指数对实验数据的拟合不是很符合,但 相比较而言,扩展指数对实验数据的拟合更符合实 验结果。晶体在 UV 光照射下产生小极化子 Nb^{t++},

图 6 UVLIA 随抽运光强变化

图 7 Fe:SLN UVLIA 弛豫过程的扩展指数和 单指数函数模拟实验曲线的比较

Fig. 7 Comparison of stretched-exponential fit, monoexponential fit and experimental curves for temporal relaxation of UVLIA in Fe:SLN

导致大的 UVLIA 产生,因为电子可以在 Fe²⁺、 Fe³⁺和 Nb⁴⁺_{Li}、Nb⁵⁺之间直接交换,并不仅仅只是 Fe³⁺和 Nb⁵⁺_{Li}从导带中直接捕获,因为 UVLIA 的衰 减不再是以简单的指数行为衰减^[22],而是遵循复杂 的扩展指数衰减行为,故采用扩展指数对弛豫过程 进行拟合。

图 8 和图 9 分别是小极化子寿命 τ 和扩展指数 因子 β 随抽运光光强的变化曲线图,虚线是运用双 中心模型的电荷输运方程组模拟得到的曲线,两者 符合得很好。实验结果表明,随着抽运光光强的增 加,小极化子的寿命和扩展指数因子都降低。这与 同成分高掺杂浓度(6.7-71×10²⁴/m³)Fe:SLN 晶 体在用脉冲激光抽运导致 UVLIA 的弛豫特性是完 全相反的,即扩展因子和弛豫特征时间随抽运光的

图 8 不同抽运光强下小极化子的寿命 Fig. 8 Dependence of lifetime of small polarons on pump intensity

图 9 不同抽运光强下的扩展因子

Fig. 9 Dependence of stretching factor on pump intensity 增加而增加,这个相反的实验结果目前还无法给予 合理的解释^[19]。同时,随着掺杂 Fe 浓度的增加,小 极化子的寿命和扩展因子也降低,这一结论,除了用 前面的双中心电子输运模型的解释以外,按照 Berben 等^[19]的唯象理论,光致小极化子暗衰减主要 是由电子从 Nb⁴⁺ 中心到 Fe³⁺ 中心的直接隧穿所决 定的,这样可采用与距离有关的电荷跃迁模型对这 种衰减行为做出简单合理的解释。增加抽运光光 强,会产生更多的陷阱离子 Fe³⁺ 和小极化子 Nb⁴⁺_{Li}, 使得小极化子和离子化的深陷阱中心 Fe³⁺ 的平均 距离变短,因而导致衰减的更迅速,小极化子的寿命 更短。同样,当铁掺杂浓度增加,晶体中深陷阱中心 Fe³⁺密度增大,小极化子和 Fe³⁺ 的平均距离变短, 小极化子寿命更短。当然,对晶体进行氧化处理,同 样可达到缩短小极化子寿命的目的。从图 8 和图 9 还可以看出,如果抽运光强足够低,即小极化子浓度 足够低,扩展指数因子β将向1趋近,其衰减过程将 趋近于单指数行为。

实验结果和电荷输运方程组模拟得到的曲线基 本符合,表明用深浅能级之间直接激发和复合的双 中心模型可以描述 UVLIA 的衰减行为。实验数据 与数值模拟结果有些偏差,这是由于计算采用的参 数和样本的真实参数有偏差以及实验的环境等诸多 因素所导致,但这些偏差并不妨碍用双中心模型的 电荷输运方程研究晶体的 UVLIA 特性。

4 结 论

通过研究了不掺杂和掺 Fe 浓度不同的 SLN 晶 体在连续 UV 光照射下的 UVLIA 以及衰减过程, 以双中心模型为基础,利用四阶龙格-库塔法解电子 输运方程的数值解,并对 UVLIA 的全过程进行模 拟。实验结果表明,UVLIA 的暗衰减过程是按扩 展指数形式衰减,小极化子的寿命和扩展因子随 UV 光光强增大而减小,并对这一实验结果做了理 论分析和理论模拟。该研究不但可以有助于了解电 荷输运过程的物理机制,而且对 SLN 晶体中与小极 化子 Nb⁴⁺_{Li}、Nb⁵⁺_{Li}相关的双色非挥发全息存储具有 重要的指导意义。

参考文献

- 1 J. J. Amodei. Electron diffusion effects during hologram recording in crystal [J]. Appl. Phys. Lett., 1971, 18 (1): 22~24
- 2 F. Micheron, G. Bismuth. Electrical control of fixation and erasure of holographic patterns in ferroelectric materials [J]. *Appl. Phys. Lett.*, 1972, 20(2): 79~81
- 3 D. V. Linde, A. M. Glass, K. F. Rodgers. Multiphoton photorefractive processes for optical storage in LiNbO₃ [J]. *Appl. Phys. Lett.*, 1974, 25(3): 155~157
- 4 D. V. Linde, A. M. Glass, K. F. Rodgers. Optical storage using refractive index changes induced by two-step excitation[J]. *Appl. Phys. Lett.*, 1976, 47(1): 217~220
- 5 H. Guenther, R. Macfarlane, Y. Furukawa *et al.*. Two-color holography in reduced near-stoichiometric lithium niobate [J]. *Appl. Opt.*, 1998, **37**(32): 7611~7623
- 6 L. Hesselink, S. Orlov, A. Liu *et al.*. Photorefractive materials for nonvolatile volume holographic data storage [J]. *Science*, 1998, 282(5391): 1089~1094
- 7 Y. Liu, K. Kitamura, S. Takekawa *et al.*. Nonvolatile twocolor holography in Mn-doped near-stoichiometric lithium niobate [J]. Appl. Phys. Lett., 2002, 81(15): 2686~2688
- 8 K. Kitamura, Y. Furukawa, Y. Ji *et al.*. Photorefractive effect in LiNbO₃ crystals enhanced by stoichiometry control [J]. J. Appl. Phys., 1996, 82(3): 1006~1009
- 9 Y. Furukawa, K. Kitamura, Y. Ji et al.. Photorefractive properties of iron-doped stoichiometric lithium niobate[J]. Opt. Lett., 1997, 22(8): 501~503
- 10 S. M. Kostritskii, O. G. Sevostyanov. Influence of intrinsic defects on light-induced changes in the refractive index of lithium niobate crystals[J]. Appl. Phys. B, 1997, 65(4-5): 527~533
- 11 T. Zhang, B. Wang, S. Fang *et al.*. Growth and photorefractive properties of an Fe-doped near-stoichiometric LiNbO₃ crystal[J].
 J. Phys. D: Appl. Phys., 2005, 38(12): 2013~2016
- 12 H. D. Liu, X. Xie, Y. F. Kong et al.. Photorefractive properties of near-stoichiometric lithium niobate crystals doped

with iron[J]. Opt. Mater., 2006, 28(3): 212~215

- K. Polgar, A. Peter, L. Kovacs *et al.*. Growth of stoichiometric LiNbO₃ single crystals by top seeded solution growth method[J].
 J. Crystal Growth, 1997, **177**(3-4); 211~216
- 14 H. M. O'Bryan, P. K. Gallagher. C. D. Brandle. Congruent composition and Li-rich phase boundary of LiNbO₃[J]. J. Am. Ceram. Soc., 1985, 68(9): 493~496
- 15 U. Schlarb, K. Betzler. Influence of the defect structure on the refractive indices of undoped and Mg-doped lithium niobate[J]. *Phys. Rev. B*, 1994, **50**(2): 751~757
- 16 H. Kurz, E. Krätzig, W. Keune *et al.*. Photorefractive centers in LiNbO₃, studied by optical-, Mössbauer- and EPR- methods [J]. *Appl. Phys. A*, 1977, **12**(4): 355~368
- 17 M. Falk, K. Buse. Thermo-electric method for nearly complete oxidization of highly iron-doped lithium niobate crystals [J]. *Appl. Phys. B*, 2005, **81**(6): 853~855
- 18 M. Simon, F. Jermann, E. Krätzig. Light-induced absorption changes in iron-doped LiNbO₃ [J]. Opt. Mater., 1994, 3(4): 243~250

- 19 D. Berben, K. Buse, S. Wevering *et al.*. Lifetime of small polarons in iron-doped lithium-niobate crystals [J]. J. Appl. Phys., 2000, 87(3): 1034~1041
- 20 K. Buse, F. Jermann, E. Krätzig. Two-step photorefractive hologram recording in LiNbO₃ : Fe[J]. *Ferroelectrics*, 1993, 141(2): 197~205
- 21 Y. Liu, K. Kitamura, S. Takekawa *et al.*. Nonvolatile twocolor holography in Mn-doped near-stoichiometric lithium niobate [J]. *Appl. Phys. Lett.*, 2002, **81**(15): 2686~2688
- 22 Y. Liu, K. Kitamura, S. Takekawa *et al.*. UV-light-induced absorption and its relaxation in Mn-doped near-stoichiometric LiNbO₃[J]. J. Appl. Phys., 2005, 97(7): 073515
- 23 S. Wevering, J. Imbrock, E. Krätzig. Relaxation of lightinduced absorption changes in photorefractive lithium tantalate crystals [J]. J. Opt. Soc. Am. B, 2001, 18(4): 472~478
- 24 D. Zhang, E. Y. B. Pun. Modification of stretchedexponentially dependent depopulation dynamics of small polaron in Fe: LiNbO₃ crystals [J]. J. Appl. Phys., 2004, 95(7): 3437~3442

栏目编辑:李文喆